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[1] Fawaz, Hassan Ismail, et al. "Deep learning for time series classification: a review." Data Mining and Knowledge Discovery 33.4 (2019): 917-963.
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GraphSleepNet: Adaptive Spatial-Temporal Graph

Convolutional Networks for Sleep Stage Classification

1B HEE: https://www.ijcai.org/Proceedings/2020/184
18 : https://github.com/ziyujia/GraphSleepNet
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£)) Motivation & Challenge
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Motivation & Challenge

PEi2: A RAithiEEN IS THIE.
© EREIREAE, ARREHZS SRR,
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Sleep Stage Pair Transition Pattern® Rule Differentiating Features
N1-{N1,N2} 5.A.Note.1 Arousal, K-complexes, sleep spindles
N1-N2 5.B.1 K-complexes, sleep spindles

(N2-)N2-{N1,N2}(-N2)

5.C.1.b Arousal, K-complexes, sleep spindles
N2-{N1-N1,N2-N2}-N2 5.C.1.c Alpha, body movement, slow eye movement
7.B Chin EMG tone
N1-R R-R-{N1,R}-N2 7.C.1.b Chin EMG tone
- 7.C.l.c Chin EMG tone, arousal, slow eye movement
R-{N1-N1-N1,R-R-R} 7.C.1d Alpha, body movement, slow eye movement
R-R-{N2,R}-N2 7.C.1l.e Sleep spindles
N2-R 7.D.1 Chin EMG tone
(N2-)N2-{N2,R}-R(-R) 7.D.2 Chin EMG tone, K-complexes, sleep spindles

7.D.3

K-complexes, sleep s pmdl

*Curly braces indicate choice between the stages or stage progre:

sions in the set, and parentheses indicate optional epochs.
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Methods
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®) Methods
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PEEE2 . ARRUEIRANATZSSHIE.
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Experiments

EUREEE :
Montreal Archive of Sleep Studies (MASS)-SS3 dataset ']

¢ ZEEEESREMERZINE (285 EM34ILE) HIPSGIER.

¢ ERREAASMITERGIXLPSGIER D AR MEIRITER (W, N1, N2, N3F]
REM) .

¢ BIINRBRESTHESMBEETIRRHNSHE (DE) L.

6357 4829 29777 7651 10566
10.7% 8.2% 50.3% 12.9% 17.9%

Number of samples for each sleep stage

Beijing Jiaotong University



&) Experiments
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¢ [Phan et al., 2019]P: B ERAE T TEIAIN B IHEL R EFNBITHREMLE, KE—
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¢ [Jiang et al., 2019]1: FERAZIESH AR TR /REKIERULILEYZ FIRERRMER D28,
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Experiments

5SOTARZRINILLG R :

Method Overall results F1-score for each class

Accuracy Fl-score Kappa Wake NI N2 N3 REM
[Dong et al.. 2017] SVM 0.797 0.750 = 0.786 0487 0.861 0.825 0.792
[Dong et al., 2017] RF 0.817 0.724 Z 0.782 0.351 0.880 0.815 0.794
[Dong et al.. 2017] MLP+LSTM 0.859 0.805 = 0.846 0.563 0907 0.848 0.861
[Supratak et al.. 2017] CNN+BiLSTM 0.862 0.817 0.800 0.873 0.598 0903 0.815 0.893
[Chambon et al., 2018] CNN 0.739 0.673 0.640 0.730 0294 0812 0.765 0.764
[Jiang ez al., 2019] RF+HMM 0.808 0.793 0.710 2 = : z =
[Phan et al.. 2019] ARNN+RNN 0.871 0.833 0.815 - 2 = - -
[Sun et al., 2019] CNN+BiLSTM 0.881 0.824 0.819 0912 0551 0916 0826 0914
GraphSleepNet Adaptive ST-GCN 0.889 0.841 0.834 0913 0.603 0.921 0.851 0.919

Table 2: The performance comparison of the state-of-the-art approaches on the MASS dataset

Beijing Jiaotong University



Experiments
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0.90 0.90

Random Th=1
0.89 Fully Connected ~ 0.89 Th=3
0.88 ‘ k-NN 0.88 W—Th=5
Space Dist =
. — p istance 87 - Tp=1
fi | PLV | Tn = g
0.86 Adaptive Sleep 0.86 Th=11
0.85 . Graph Learning 0.85
Accuracy Accuracy
(a) (b)
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&) Conclusion
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SST-EmotionNet: Spatial-Spectral-Temporal based Attention 3D

Dense Network for EEG Emotion Recognition

1E3HEE: https://dl.acm.org/doi/abs/10.1145/3394171.3413724
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" Arousal
(high)
Excited
Happy

1 Pleased

75_% Annoying
B SV S ABBRSIRSSR,, WIEI AR 2, !
[BERRIEIHMEEE B HRERINESEE, —

Sad 3
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SEHRBFRERBIZEEN, KEESALAEIMRR
LSRRI ESLIRERIA ST AN .

Valence
(positive)
4 Relaxed
Peaceful
Calm
(low)

[1] Al-Kaysi, et al. (2017). Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. Journal of affective

disorders, 208, 597-603.

[2] Bocharov, et al. (2017). Depression and implicit emotion processing: An EEG study. Neurophysiologie Clinique/Clinical Neurophysiology, 47(3), 225-230.
[3] Zhong, et al. (2020). EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Transactions on Affective Computing.
[4] Zheng, et al. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on

Autonomous Mental Development, 7(3), 162-175.
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Table 1: The performance comparison of the state-of-the-art
models on the SEED and SEED-IV dataset

Model SEED SEED-IV
ACC (%) STD (%) ACC (%) STD (%)
SVM [26] 83.99 9.72 56.61 20.05
GSCCA [33] 82.96 9.95 69.08 16.66
DBN [31] 86.08 8.34 66.77 7.38
DGCNN [25] 90.40 8.49 69.88 16.29
BiDANN [17] 92.38 7.04 70.29 12.63
BiHDM [19] 93.12 6.06 74.35 14.09
R2G-STNN [18]  93.38 5.96 - -
RGNN [34] 94.24 5.95 79.37 10.54

SST-EmotionNet 96.02 2.17 84.92 6.66
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m MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Motor
Imagery Classification (ECML-PKDD 2020, CCF B, Oral)

m Refined nonuniform embedding for coupling detection in multivariate time series.
Physical Review E 101 (2020) 062113.(SCI-I1)

m Detecting Causality in Multivariate Time Series via Non-Uniform Embedding.
Entropy 21(12) (2019): 1233. (SCI-I111)

m Sleep Stage Classification Model Based on Deep Convolutional Neural Network.

Journal of Zhejiang University (Engineering Science). (Chinese Journal EI)
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GraphSleepNet TRENTOOL3

2 - - -
GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks Forked from trentool TRENTOOL3 mﬂﬁ ° Z Iqu I a@ bJ tu . ed u . C n
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or Sleep stage Llassification Open-Source MATLAB toolbox for transfer entropy estimation

@®rython Tri1e ¥ 10 @ MATLAB  T¥ 1 E
-
ECML-PKDD_MMCNN Signal-feature-extraction DE-and-PSD w —J
n L]
MMCNN: A Multi-branch Multi-scale Convolutional Neural Network for Code for extracting DE (differential entropy) and PSD (power spectral density)
Motor Imagery Classification feature of signals.
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Background

» Drug Discovery!!]

uoiNg 2§ 03 uol|iq T$~ ‘sieak 9121

Safety Monitoring
@ 1ompound |

[1] M. Zitnik, et al. Machine Learning for Drug Development. [JCAI 20’
3/14



Background

» Drug-Drug Interaction (DDI)

Drug-drug interactions occur when two or more drugs react with each other.
This DDI may cause you to experience an unexpected side effect.

P+ 9

» Why Need Drug Drug Interaction Prediction?

For example, mixing a drug you take to help you sleep (a sedative) and a
drug you take for allergies (an antihistamine) can slow your reactions and
make driving a car or operating machinery dangerous.

14



Motivation
» Limitation of Previous Methods

e Molecule representation

Intuition: drugs with similar representations will
perform similar DDls

Goal: learn better drug similarity based on
multi-view drug featuresl?

Limitation: design specialized drug representation

=

8
e Network embedding-based methods wym@‘rzg r/©§

Ciprofloxacin t——@ Mupirocin
Intuition: drug combination leads to polypharmacy

side effect
Goal: predict labeled edges between drugs[3]

Limitation: single relation

©Dng  © Gene B Feature vector
1y Gastrointestinal bleed effect ~ @—@ Drug target interaction
12 Bradycardia effect ©—0 Physical protein binding

[2] T. Ma, et al. Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders. IJCAI 18’
[3] M. Zitnik, et al. Modeling Polypharmacy Side Effects with Graph Convolutional Networks. Bioinformatics

18’

Drugs

Genes

14



» Our Solution;: KGNN

e Knowledge graph

provide abundant information

- structural relations among multiple

entities

- semantic relations associated with

each node

e Graph neural network

recursively learn from neighboring

information
- neighborhood sampling
- aggregation

[4] https://github.com/gnn4dr/DRKG

Motivation
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Figure: Interactions in the
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Knowledge Graph Neural Network

» Framework

| Dataset | 7 Input 1-Hop  2-Hop a0orel )
. I p p p " re2 B!
Bio2RDF KG | <entity, relation>—------- T i 4. GO R J
R GNN vy ¥ |
| _
| om0 g
o I ~Bal |§ |
§ : Drugli ,% .i ‘_g‘_ |
« I

| ~No.g:2® |8l of
| ! e |8l 2]
4 ® [ElH g
/ ! ! @ |

| / | I
Y " DDI Matrix I P W o 5@ || 5|
i~ “Drugl”  Drug2 Labell ! - .: I— \
| m (DBO000L DBOL181 1 | | I~ e |
1 8 DB00001 DB01250 0 T | §\“,@O; 2 |
|£. | | : ‘ \ |
|® (DB15441 DB15443 0 | | ! @ |

e DDI extraction and KG construction
e KGNN layer
e Drug-drug interaction prediction



Knowledge Graph Neural Network

» DDI Extraction and KG Construction

e Download and parse the dataset ] Dataset |

e Bio2RDFL! Bio2RDFY | KG

Buisied

Table: The detailed description of KG.

DrugBank  KEGG-drug

DB15441 DB15443 0

Drugs 2,578 1,925
Interactions 612,388 56,983 Y T TTTRARI Matriv
Er]tltles 2,129,712 129,910 " "Drugl” Drug2 Labeli
Relation Types 72 167 ' w (DB00001 DBO1181 1 !
KG Triples 7,852,852 362,870 | & | DBO0001 DB01250 0
| 2. -
|
|

[5] Bio2RDF: https://github.com/bio2rdf/bio2rdf-scripts/wiki



Knowledge Graph

» KGNN Layer

e Local receptive: 2-hop

e Neighborhood sampling

Nhpeigh(€): the entity connects directly to
a drug
S(e): a fixed size set, S(e) < Npejgh(€)

e Aggregation
aggregate the entity e and its

neighborhood representation eg(e)

Neural Network

aggresum = o(W - (e + eg(e)) + b)

aggreconcat = o(W - concat(e, eé(e)) +b)

ag8r€neighbor = O'(W . eg(e) + b)

14



Knowledge Graph Neural Network

» Drug-Drug Interaction Prediction

e Extract the DDI data sources and construct

the corresponding KG

e Obtain the features of drug and its

neighboring of related entities

e Concatenate all the representations and
feed them to output the interaction value

» Loss Function

Loss =

D

()EY (idENy.j#i)

Algorithm 1 KGNN algorithm

Input: DDI matrix Y: knowledge graph G(Ne. N, ): neigh-

borhood field S(e)(e € N); hyper-parameter: H, k, g( ),

aggre(), 7(), f1

Output: T'(i. /|8, Y, G)
1: while KGNN not converge do
2 for(ij)e Ydo

3 {RF[h]}}L,  Receptive-Field(e);

4 ¢/[0] « e, Ye € RF[0];

s for h=1. ... H do

6 for ¢ € RF[h] do

7 eholh— 1] & Tiesi Ciélh—1:
8 €[] « aggre(el b — 1], ¢k = 1]);
9 end for

10: end for

1 & ellh];

12 Caleulate the score §; = 7(i,é%), ; = 7(j,&):
13 Calculate predicted probability §:.; = /(ji, §
14: Update parameters :

15: end for

16: end while

17: return T’

Figure: KGNN algorithm

—Yijlogyij — (1 —yij)log(1— ¥i;)

14



Experimental Results

» Dataset
e DrugBank (V5.1.4)I]
obtains 2,578 approved small molecule drugs and 612,388 unique
approved DDlIs spanning 13,339 drugs.
o KEGG-drugl]
collects 1,925 approved drugs and 56,983 approved interactions
spanning 11,147 drugs and 324,183 interactions respectively.
randomly divide all approved DDlIs as positive samples into training,
validation and testing sets in a 8/1/1 ratio
» Metrics
e ACC, AUPR, AUC-ROC, F1 scores

» Baselines

e Matrix Factorization (MF), Random Walk (RW), Neural Network
(NN), Deep Learning (DL), Knowledge Graph (KG)

[6] DrugBank: https://go.drugbank.com/releases/latest
[7] KEGG-drug: https://www.kegg.jp/kegg/drug/
11/14



Experimental Results

» Results and Analysis
compare the performance of the proposed method with the baselines

» Ablation Study
test the performance of multiple aggregation operations

W MF-based RW-based NN-based DL-based KG-based KGNN,
Metrics Laplacian GreRep DeepWalk struc2vec LINE SDNE  GAE  DeepDDI  KG-ddi  neighbor ~ sum  concat
ACC 07183 08443  0.8349 07882  0.8280 0.8303 07491  0.8123 07867  0.9354 0.9538 0.9561
0.8029  0.8718  0.8547 0.8436  0.8655 0.8674 0.7586  0.8229 0.8154  0.8846  0.8882 0.8950
AUPR 07533 09115  0.9070 08672  0.8915 0.8782 0.7403  0.9193 - 0.9801  0.9890 0.9892
08261 09055  0.9011 0.8861  0.8068 0.8967 0.7571  0.8442 - 0.9207  0.9247 0.9533
AUC-ROC 07966 09230  0.9181 0.8735  0.9092 0.9029 0.8085  0.9261 07867  0.9824  0.9902 0.9912
08736  0.9305  0.9208 09086  0.9264 0.9249 0.8334  0.8994 08154  0.9418  0.9453 0.9518
Fl 07270 08461  0.8357 07962 0.8318 0.8373 0.7889  0.8466 07843 09366 0.9544 0.9566
08079 08748  0.8570 0.8476  0.8695 0.8704 0.7888  0.7966 08152  0.8869 0.8909 0.8982

Ta ble: Performance of KGNN against comparative approaches
reported on DrugBank and KEGG-drug dataset respectively.

. First/second row of each method corresponds to results

12 /14



Experimental Results

» Impact of Key Parameters

e Neighborhood size k

k=16, achieves the best
performance

e Depth of receptive field H

H = 3, performance decreases

e Dimension of embedding d

d =32 or 64, boost the
performance

s ACC  EmE AUPR AUC-ROC 1

Scores of different nelghbor sampllng size k

dididedideds

k=2 k=4 k=8 k=16 k=32 k=64

Scores of different depth of receptive field H

dultdididud

H=4 H=5  H=6

Scores of different dimension of embedding d

T
o]
=y
w
N
a
@
R
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Conclusion and Future Work

» Conclusion
e An novel framework for drug-drug interaction prediction.
e Extends spatial-based GNN methods to the knowledge graph.
e Provides new insights into the study of jointly considering
- topological structure information of drug
- semantic relation of knowledge graph
» Future Work
e Large-scale knowledge graph
e Neighborhood sampling
e Multi-typed DDI prediction

Paper: https://www.ijcai.org/Proceedings/2020,/0380.pdf

Code: https://github.com/jacklin18/KGNN
About me: https://jacklin18.github.io/
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Introduction
What is causality?

A definition with random variables
Given two random variables T and Y, we say T causes Y iff
changing the value of T would cause a change in the value
of Y with the values of all the other variables fixed.

IGNITE



Introduction

Why do we care about causal effects?

« They are crucial for decision making
— A/B tests in tech companies
— Clinical trials for medicines

Why do we study networked observational data?
- Network information is ubiquitous.

— Social networks

— Branch networks of banks
- Network information can be useful, but how?

Arizona State University
Data Mining and Machine Learning Lab
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Introduction

Networked observational data ({x;, t;, ¥ @'J\Lp A)

X - feature vector of an instance

ti_ - binary observed treatment of an instance (X414, 1)
Yi _ an observed factual outcome of an instance .\

A - network information
()]

8 (x2,t2, Yo)

™\ Y
(x1,t1,%1)

t = 1: take medicine
t =0 : take no medicine
y = 1: good health outcome

y = 0 : bad health outcome

Arizona State University
Data Mining and Machine Learning Lab
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Challenge and Motivation

« Challenge: Hidden confounders
— Without controlling hidden confounders -> biased

estimates
«  Motivation: two heuristics in existing work
— Balancing the representation of confounders [1]
— Predicting the treatment assignments [2]
— Can we benefit from properly combining them?

[1] Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." In International

Conference on Machine Learning, pp. 3076-3085. PMLR, 2017.
[2] Veitch, Victor, Yixin Wang, and David Blei. "Using embeddings to correct for unobserved confounding in networks." In Advances in Neural

Information Processing Systems, pp. 13792-13802. 2019.

Arizona State University IGNITE
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ldentification

|dentification: write causal estimands as probability quantities.

In this work, we follow the theory of measurement bias [1] to identify causal
effects based on the following causal graph.

Latent confounders

2 }*___,@ Network Information

Treatment assignment A @ Observed features

Outcome
Specifically, with the conditional independence ¢!, 1/° L t|z , We can
identify the causal effect using

Ely' —y’|z] = Ely'|z] — Ely’|2] = Ely*|2,t = 1] - E[y°|2,t = 0] = E[y|z,t = 1] - E[y|2,t =0

[1] Kuroki, Manabu, and Judea Pearl. "Measurement bias and effect restoration in causal inference.” Biometrika 101, no. 2 (2014): 423-437.
' IGNITE
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IGNITE

A Minimax game for learning latent confounders: overview

Outcome
Inference
Loss
Network
Information Latent ‘
Confounders Repr.
Balancing
Loss

Observed
Features

Arizona State University

Graph NN

IGNITE
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IGNITE

Critic based representation balancing

_ 1 - 1 -
IIZL;HIIISJ{ ECB — E Z D(hz) ) Z D(hz)

Gradient penalty [1]

[1] Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. "Improved training of
wasserstein gans." In Advances in neural information processing systems, pp. 5767-5777.2017.
Arizona State University
IGNITE
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IGNITE

A Minimax game for learning latent confounders: min step

= nc /4 Outcome
BN Wlle , Inference
o 3«") min Loss
&
Network smin
Informati Latent Repr.
on Confound Balancing
ers Loss
Observed : 1 - 1 -
Features lax Lop = 1 th::1 D(h;) — 0 Z_: D(h;)

Arizona State University
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IGNITE

A Minimax game for learning latent confounders: max step
@

Outcome
Inference
Loss

Network
Information

Latent &

Confounders Repr.
Balancing

Loss

Observed
Features

Arizona State University

: 1 ~ 1 -
npfen = s 32 DB~ 5 32 pik

Graph NN 2:t; =1 2:t; =0
IGNITE
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Experimental Setup

«  Semi-synthetic datasets
— We obtain features and network information from real-world datasets.
— We synthesize treatments and outcomes similar to the News dataset in [1].
— We consider various strength of hidden confounding controlled by parameter g,
— Different from [2], we randomly sample edge weights to reflect real-world cases.

Dataset | Instances Edges Features | k2 Average ATE = STD
0.5 6.079 = 2.962
BC 5,196 173,468 8,189 1 9.012 = 3.602
2 20.003 = 8.132
0.5 5.130 = 0.892
Flickr 7,575 239,738 12,047 1 7.576 = 0.715
2 13.445 = 2.093

Table 1: Statistics of the Datasets
Training/validation/test = 60% : 20% : 20%

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning individual causal effects from networked observational data." In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 232-240. 2020.

Arizona State University
Data Mining and Machine Learning Lab IGNITE 11




Experimental Setup

e Baselines
— SOTA neural network based and ensemble based causal inference methods
e Ablation models: GATD+, GATD and GATDT
e Network Deconfounder [3] and Causal Network Embedding [5]
e CFRNet [1], CEVAE [2], and Causal Forest [4]
e Evaluation:
— compare the estimated causal effects with the ground truth
— robustness under various hidden confounding strength

e Metrics:
1 . .
- Z(Tf - 1i)?,
i=1

— RMSE on estimated ITEs
— MAE on the estimated average treatment effect (ATE)

1 . 1
eaTE == ) (F) = = ) (1)
n “ n £
i=1 i=1
[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.
[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurlPS, 2017.
[3] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning individual causal effects from networked observational data." In Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 232-240. 2020.
[4] Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." JASA. 2018
[5] Veitch, Victor, Yixin Wang, and David Blei. "Using embeddings to correct for unobserved confounding in networks." In Advances in Neural Information Processing Systems, pp.
13792-13802. 2019.

VEPEHE =

k]

Arizona State University
Data Mining and Machine Learning Lab
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Results

« IGNITE outperforms the ablation models and the state-of-the-art methods as
it combines the benefit of the two heuristics.

«  The error of IGNITE increases the least as the influence of hidden
confounding ( K9 ) increases.

BC
Ko = 0.5 Ko = 1 Ko = 2

VEPEHE | €ATE | /EPEHE | €ATE | \JEPEHE | €ATE

IGNITE 4.415 0.506 6.163 0.971 10.998 2514
GATD+ 5.132 0.666 8.442 2,159 17.167 10.74
GATD 5.170 1.070 7.989 1.779 16.574 5.942
GATDT 5.165 1.055 8.017 1.863 16.578 5.940
ND 5.386 2.070 10.403 4811 20.286 10.350
CNE - 71.314 - 13.212 - 24.298
CNE- 10.323 8.194 18.839 14.991 33.607 26.531
CFR 10.073 5.000 15.229 9.631 36.680 16.481
CEVAE 6.812 3.129 12.055 2.700 24128 14.576
CF 5.941 3.349 10.413 3.336 19.145 16.812

Arizona State University
Data Mining and Machine Learning Lab
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More to find

The paper can be found at https://www.ijcai.org/Proceedings/2020/0625.pdf

You can also reach out to me through rguo12@asu.edu

Code is available upon request for now and will be released soon.

Arizona State University
Data Mining and Machine Learning Lab
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The Challenge

With observational data, what can we estimate?
Probabilistic quantities: joint, conditional and marginal distributions of observed

variables.

Causal effect
e |n potential outcome framework
— Potential outcomes y!,t € {0,1}
— Individual treatment effect (ITE) 7, =y — o)
— Conditional average treatment effect (CATE) E[7-|x]
— Average treatment effect E[T]
— Not directly estimable from data

How can network information help connect probabilistic quantities to causal effects?

Arizona State University IGNITE

Data Mining and Machine Learning Lab



Causal Identification

Causal Identification
e With causal assumptions, we can identify causal effects by
writing them as functions of probabilistic quantities.

| Identification Probabilistic
Quantities

Arizona State University
Data Mining and Machine Learning Lab
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Causal Identification
Strong ignorability

e |tassumes that
— all the confounders have been measured as the observed features X,
— each instance’s probability to receive treatment (true propensity score) is
between 0 and 1.
e In acausal graph

t U

e |nthe potential outcome framework Yy, yO 1t

Can be
e How it works in identifying CATE/ITE E[r|x] = E[' -1°x] estimated!

= Ely'|x] — E[y°
- [yllxvt - 1] —

:I E[y|xa t = 1]
IGNITE
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Causal Identification

Strong ignorability can be untenable given observational data

e There can exist hidden confounders (e.g., socio-economic
status)

e Using strong ignorability can lead to confounding bias.

Relaxed strong ignorability assumption with latent confounders z

y',y’ Ltz

e Latent confounders z are not observable, we only assume its existence.
e We can learn z from data via machine learning models.

Arizona State University
Data Mining and Machine Learning Lab
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Causal Identification

We propose to use network information and observed features to
improve the learned latent confounders.

e Network information can compensate for hidden confounders.
e Homophily: similar individuals are more likely to connect with

each other.
The causal graph Latent confounders
2 e oo Network Information
~ &\
Treatment assignment A @ Observed features
Outcome

Arizona State University
Data Mining and Machine Learning Lab
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Two Problems

e Learning individual treatment effects with networked
observational data [1]

e Counterfactual evaluation of treatment assignment functions
with networked observational data [2]

[1] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning Individual Causal Effects from Networked Observational
Data." WSDM 2020.

[2] Guo, Ruocheng, Jundong Li, and Huan Liu. "Counterfactual Evaluation of Treatment Assignment Functions with

N otwoarkod ()hge slidlaYale ._‘_ D \/] () ) ()
\ Arizona State University

IGNITE
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Learning Individual Causal Effects with
Networked Observational Data

IGNITE



Problem Definition

Problem: learning ITEs with networked observational data

Given: networked observational data ({x;, ¢;, yi}N A)

1=1>

Find: ITE 7, = ¢! — 9? of an instance given its features and the
network information.

Arizona State University
Data Mining and Machine Learning Lab
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Existing Methods

Neural network based methods that relies on strong ignorability
e CFRNet [1]

Neural network based methods that learns latent confounders with variational
inference
e CEVAE [2]

Ensembles of trees that also rely on strong ignorability
e BART [3] Causal Forest [4]

None of them utilizes network information

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurlPS, 2017.

[3] Hill, Jennifer L. "Bayesian nonparametric modeling for causal inference." Journal of Computational and Graphical Statistics. 2011.
ﬁ 4] Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests JASA. 2018,

Data Mining and Machine Learning Lab



Network Deconfounder

How to leverage network information to

learn latent confounders? Fully
- Connected
e Use observed features and network Original Layers
. . Features
information through Graph ~ fi
Convolutional Networks (GCN). ‘t [T [T a®
n 0 Representation fo ')°
~ N ‘ » of
Z; = Q(Xm A—) — O-((AX)ZU)a @) / - Confounders Inferred
' Graph Potential
| Network Convolutional Outcomes
)

Z; |earned latent confounders

A Normalized adjacency matrix with renormalization trick [1] .
Observed

A D_EA.D__ A A = I DJJ . ZA J,J  Treatment

Representation
Balancing Loss

U Weight matrix of the GCN layer (parameters to be Iearned)

[1]Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

Arizona State University IGNITE
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Network Deconfounder

How to leverage network information to

learn latent confounders? / Fully
. L. ‘ ‘ ‘ ‘ ‘ ‘ ‘ Connected
e Using the supervision of observed FOf'Qma' Layers
] eatures
potentlal outcomes. A f1
‘t PR
N A
Minimize the MSE on . 1 Aty 2 = n Representation fo -)°
factual outcomes min — E (yz . yi) . /aa &m of
n i=1 @) / = Confounders Inferretd
ferred " a'n Graph Potential
Inferre ~ :
e X A t Network Convoluhonall Outcomes
outcome Yi f(g( L )’ )’ Structure Layer(s)
Outcome 50N\ 3 -
inference f(iz t) - fl (ZZ) 1f t ]_ .
f H ’ A - e ’
unetion fO (zl) 1f t e O Observed
Treatment Representation

Balancing Loss

Fully connected —— 1 1s.
layers for fl A J(WL'.'U(let))’
regression fO = WOO‘(W%J(W?@)),

Arizona State University IGNITE
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Network Deconfounder

How to leverage network information to
learn latent confounders?

Representation balancing: mitigate

confounding bias/domain shift problem.

min pz (P, Q)

Minimize W-1 distance between latent confounder
distribution of the treated (P) and the controlled (Q)

p=(P.Q) = inf | Ik(z) - 2
ke Jze{z;i}it, =1

W-1 distance is the solution of the optimal transport

problem between two distributions.

K = {klk: R — R? s.t. Q(k(2)) = P(2)}

(2)dz

Arizona State University

Original
Features

<~ 7

bd T
[N &

0
@ B

Network
Structure

Fully
Connected
Layers

Observed
Treatment

Mspm

—p(
A
Representation fo
of -
- Confounders Inferred
Graph Potential
Convolutional Giiteainas
Layer(s)
Representation
Balancing Loss

y 2

/\
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Network Deconfounder

How to leverage network information to

handle confounding bias? / Fully
_ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Connected
e Loss function Original Layers

Features

n 1 . -~ f1 )Q
r:({xa,ti,yi}i1,A)—;Z(y:ﬂ—y1)2+A9||%, i ——

i=1 ﬁ ]
A
=) n Representation fo -)°
The W-1 distance (representation balancing penalty) Ve S S of
and its gradients can be approximated using the ‘()./ WGraph Confounders F')“fte"?dl
. . . otentia
efficient algorithm proposed by [1]. elwork Convelchions| i
Structure Layer(s)
Observed
Treatment Representation

Balancing Loss

[1] Cuturi, Marco, and Arnaud Doucet. "Fast Computation of Wasserstein Barycenters." In
International Conference on Machine Learning, pp. 685-693. 2014.

Arizona State University
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Experimental Setup

e Semi-synthetic datasets
We obtain features and network information from real-world datasets.
We synthesize treatments and outcomes similar to the news dataset in [1].

We consider various strength of hidden confounding controlled by parameter 9

Code & Data:
https://qgithub.com/rqguol2/networ

k-deconfounder-wsdm20

Instances| Edges |Original Features|Observed Features
'_ BC 5,196 173,468 2,173 8,189
‘Flickr| 7,575 |239,738 1,210 12,047

Training/validation/test = 60% : 20% : 20%

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

Arizona State University
Data Mining and Machine Learning Lab
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Experimental Setup

e Baselines
— SOTA neural network based and ensemble based causal inference methods
e CFRNet[1]
e CEVAE [2]
e BART[3]
e Causal Forest [4]
e Evaluation:
— compare the estimated causal effects with the ground truth
— robustness under various hidden confounding strength
e Metrics:

— RMSE on estimated ITEs 1 A )
VePEHE = | |~ Z(Tf - 1i)?,

i=1

— MAE on the estimated average treatment effect (ATE)

€ATE = |% > ) - % > (@)
i=1 i=1

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurlPS, 2017.

[3] Hill, Jennifer L. "Bayesian nonparametric modeling for causal inference." Journal of Computational and Graphical Statistics. 2011.
4] Wager, Stefan, and Susan Athe /. "E_sti_mgtiovn_ and inference of heterogeneous treatment effects using random forests." JASA. 2018.

IGNITE
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Results

e Network Deconfounder outperforms the state-of-the-art
methods as it recognizes patterns of hidden confounders from
network information.

e The error of Network Deconfounder increases the least as the
influence of hidden confounding ( /2 ) increases.

BlogCatalog

K2 0.5 1 2
VEPEHE | €ATE | VEPEHE | €ATE | \V€EPEHE | €ATE
NetDeconf (ours) 4.532 0.979 4.597 0.984 9.532 2.130
CFR-Wass 10.904 4.257 11.644 5.107 34.848 13.053
CFR-MMD 11.536 4.127 12.332 5.345 34.654 13.785
TARNet 11.570 4.228 13.561 3.170 34.420 13.122
CEVAE 7.481 1.279 10.387 1.998 24.215 5.566
Causal Forest 7.456 1.261 7.805 1.763 19.271 4.050
BART 4.808 2.680 5.770 2.278 11.608 6.418

Arizona State University
Data Mining and Machine Learning Lab
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Counterfactual Evaluation of Treatment Assignment
Functions with Networked Observational Data
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Problem Definition

Given: Networked observational data ({x;,t;, v}, A)
and a treatment assignment function 7 : X x A — (0, 1)

Find: estimate of the true utility of the treatment assignment
function  on the given data

T Y Xm yz(t)

z—l te{0,1}

Arizona State University
Data Mining and Machine Learning Lab
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Existing Methods

There are three types of classic estimators

N
Direct Method [1] 7(7) = ;ZZH(X»&)Q@(Q
i=1 t

| N e Individual
Weighted Estimator [2, 3] 7(7) = N > ad(xit)yi, | causal effect
=1 modeling
° i i - - i (xi)
Inverse Propen5|ty Scoring (IPS) [2] wips(xi, t;) = Pl=tix) ® Propensity
Doubly Robust Estimatoj\; (combination of the aforementioned two) [4]
1
T(m) = N Z[Z (i) 9i(t) + Wrps(xis i) (yi — Gi(t))-
=1

Network information has not been used!

[1] Beygelzimer, A., Dasgupta, S., & Langford, J.. Importance weighted active learning. ICML 2009.
[2] Swaminathan, A., & Joachims, T.. Counterfactual risk minimization: Learning from logged bandit feedback. ICML 2015.
[3] Swaminathan, A., & Joachims, T. (2015). The self-normalized estimator for counterfactual learning. NIPS 2015.

4] Dudik, M., Langford, J., & Li, L.. Doubly robust policy evaluation and learning. ICML 2011.
Arizona State University
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Proposed Framework

COunterfactual Network Evaluator (CONE)

e |t learns two partial representations of latent confounders for
— Individual causal effect modeling
— Propensity score modeling
e |t maximizes the mutual information between the two partial representations to

capture latent confounders _ . Factual
An overview of CONE 2} Partial Confounder Outcome
Representation Inference

(outcome) Loss

oAP~AL JREREER Y
Observed Layer Layer
Features *

0 * Mutual
; Information
/ . \. M Regularizer

ey e A
Eel® o

— GAT .. GAT *
Layer Layer

a B o "
2!: Partial Confounder Treatment
Network Representation ~ Prediction
Structure (treatment) Loss

Arizona State University
Data Mining and Machine Learning Lab
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CONE Framework

Compute partial representations with GAT layers [1]
e They capture importance of each edge

ZE - gt(XZ, 7“‘% 1 5 Z ak Wk Factual
JEN; 27 Partial Confounder Outcome

ZECI_J _ (X“ _”k ) 5 Z Bk Uk Re&rj:)r:;aet)con |nft(r;rs\ce

JEN; GAT ... GAT h *0

T k k Observed Layer Layer
Ofk. — eXp(Cs’(a [w Xi H W XJ])) Features ’ *
N ZlENi eXp(é,(aT [kal || Wle])) 0 » Infh:rﬁ:?ilon
5I bT Uk -[J-'l€ /‘\. Regularizer
o _ @7 UR [ Urx]) | £

Y Y en, exp(8 (b [Ukx; || Ukxl)) o’ BB EE 3O
e 3': Partial Confounder Treatment
Network ’ Representation Prediction

a and b are weight vectors Slructuce (treatment) Loss

Wk and Ukis the weight matrix of the k-th head

[1] Veli¢kovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.. Graph attention networks. ICLR 2018.
Arizona State University
IGNITE
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CONE Framework

Factual Outcome Inference Loss
e Let the partial representation of latent confounders predict factual outcome
e We use fully connected NN with ELU activation and MSE penalty
N

1 ~
ﬁy —_— (fy(zy) P yz)z. Factual
N : : 1 27 Partial Confounder Outcome
e 1 Representation Inference
(outcome) Loss
GAT ... GAT * °
Observed Layer Layer

Features
* Mutual
- n Mnformation
‘\. Regularizer
n T
/ — GAT .. GAT *
@) Layer Layer

PUS u ,
2!: Partial Confounder Treatment
Network Representation ~ Prediction
Structure (treatment) Loss

Arizona State University IGNITE
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CONE Framework

Treatment Prediction Loss
e CONE models propensity scores with the other partial representation
e CONE infers propensity score by a fully connected NN with sigmoid activation

P(t = 1|zt) = fi(zt) = o(v 2l + ¢)

e CONE uses cross-entropy loss for the propensity score model

Factual

1 A = ~ ~ 27 Partial Confounder Qutcom

Et === Z t log(P(t = 1|Zt)) + (1 — ti) log(P(t = 0|Zt)). Representation In:]e::nc‘:
N i (outcome) Loss

GAT ...  GAT » * o
Observed Layer Layer
Features *

» Mutual
o Regularizer

\

S && T Gar | [ GAT * o
@) Layer Layer
- 2!: Partial Confounder Treatment
Network Representation ~ Frediction
Structure (treatment) Loss

Arizona State University IGNITE
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CONE Framework

Mutual Information Maximization

Intuition
e Latent confounders should influence treatment and outcome.

A tight lower bound of mutual information is computed by an NN estimator [1].
MItah#) = Dre (P! A)IP(E) © PE) = wup By nlh(e', 2] = lor(Epaopean "))
€

Factual

h: fully connected NN with ELU units 7: Partal Confounderfouteome
The penalty term is formulated to minimize el il
the negative mutual information s 150 BB @
Features
MI N At ” R ) h ZAt’ z"y M::]ua} )
LY = —Epg Mz, 29)] + log(Ep(iuyg pian) lexp™=)]). & *
T
Pl A o
— 2!: Partial Confounderf Treatment
Network Representation Prediction
Structure (treatment) Loss

[1] Belghazi, Mohamed Ishmael, Sai Rajeswar, Aristide Baratin, Devon Hjelm, and Aaron Courville. "MINE: Mutual Information Neural Estimation." ICML 2018.

Arizona State University IGNITE
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CONE Framework

Training CONE with a combination of the loss functions

R ¢ - AM I - Factual
arg min j: = ﬁy _|_ y L‘/ + {: ﬁ . 2} Partial Confounder Outcome
e 8 Representation Inference
—hYh (outcome) Loss

GAT ... GAT * *o
Hh - the NN mutual information Onatved Layer Leyer
. , Features *
estimator’'s parameters o * Mutual
Information
-2 Y o M
Regularizer
9_ - other model parameters \\..
h P PON 2 5
— GAT .. GAT
@) Layer Layer
e 3. ; Treatment
2}: Partial Confounder 'reatme
Network Representation Prediction
Structure (treatment) Loss
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Counterfactual Evaluation with CONE

Goal: estimating utility of a treatment assignment function

We combine the two partial representations and adopt the doubly
robust estimator with SNIPS weights

i’i = COnCCLt( [2y7 22]) Inferred outcomes

ZZW X17A1yz Z;,t |
+IwSNIPS Zz; Kyz yz Zza ))]

By simple direct method in [1]

ﬁ)

'lUIPb(Z t)
E 1’LU1p.5(Z t)’

SNIPS weights Wsn1ps(Zi,t;)

With propensity scores by a logistic regression
model

[1] Bennett, Andrew, and Nathan Kallus. "Policy evaluation with latent confounders via optimal balance." In Advances in Neural Information Processing
Systems, pp. 4827-4837. 2019.
Arizona State University
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Experimental Settings

: : Y Controls the strength of hidden confoundin
Datasets Description —_— V2 g g
Dataset | Instances Edges Features | k2 | Treated Instances | Instances with y; > %
, 1 2579.5 + 20.801 1030.1 + 331.31
BC 5,196 173,468 | 8,189 2 | 2448.6 + 539.687 2031.1 + 1149.696
. B o o T | 3700.8 & 156.873 2708.3 L 745.03
Flickr 7,575 239,738 | 12,047 2 | 3859.4 + 218.072 3182.1 + 588.958

Compared to the one used in network deconfounder, we standardize the outcomes into [0,1] and introduce

negative ITEs.
Training/validation/test = 60% : 20% : 20%

Evaluation

Given treatment assignment functions with randomly sampled weights:
B eXP(WTXz' + Wﬁ DN () ‘5tTXj)
> exp(thxi + m Zje]\f{z‘) 5tTXj)
We compare the estimated utilitv of a given treatment assignment function with the group truth

RMSE = \/ﬁzi"_l(ﬁ‘(w) 7(7))?
MAE = ‘ZL L T(m) — mi(m)l,

ﬂ—f‘w (Xiﬂ

Kis the number of randomly sampled treatment assignment functions.

Arizona State University
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Experimental Setup
Baseline Methods: 9 SOTA baseline methods

Optimal Kernel Balancing (OKB)

Inverse Propensity Scoring (IPS-X)

Self-Normalized Inverse Propensity Scoring (SNIPS-X)
Direct Method (OLS1, OLS2, DM-X)

Linear regression methods: OLS1, OLS2

NN-based: DM-X

Doubly Robust Estimators (DR-OLS1, DR-OLS2, DR-DM-X)

Arizona State University
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Effectiveness

Observations

e CONE outperforms baselines consistently and significantly
* CONE worsens less than baselines when hidden confounding effect ({9 ) grows
e Using network information helps counterfactual evaluation

BlogCatalog Flickr

Ko =1 Ko = 2 ke =1 ko = 2

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
CONE (ours) 0.034 0.026 0.037 0.027 0.014 0.011 0.014 0.012
OKEB 0.141 (.135 0.150 0.143 0.073 0.063 0.093 0.083
IPS-X 0.042 0.039 0.089 0.074 0.018 0.016 0.030 0.027 |
SNIPS-X 0.042 0.038 0.089 0.074 0.018 0.017 0.029 0.027
DM-X 0.229 0.229 0.241 0.239 0.099 0.097 0.117 0.114
OLS1 0.302 0.301 0.347 0.346 0.144 0.143 0.168 0.167
OLS2 0.275 0.27: 0.308 0.304 0.139 0.139 0.162 0.161
DR-DM-X 0.041 0.034 0.071 0.060 0.019 0.018 0.028 0.026
DR-0OLS1 0,042 0.039 0.089 0,074 0018 0,016 0.030 0.027
DR-OLS2 0.047 0.041 0.090 0.078 0.019 0.017 0.031 0.028

Arizona State University
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Conclusion

We propose
e acausal identification strategy
e two novel frameworks
e to solve two causal inference problems with networked observational data.

Empirical results support the hypothesis
e with network information, we can improve the learned latent confounders
e for causal effect estimation and counterfactual evaluation.

Arizona State University
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Proposed Work for Dissertation Defense
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Fairness of Treatment Assignment Functions

Fairness is important in decision making

e Resources of beneficial treatments are often limited.

e For example, In COVID-19, Small Business Administration (SBA)
needs to distribute limited amount of loans.

When we adapt fairness metrics from machine learning to causal
inference, we find some of them depend on counterfactuals.
e They lead to challenging causal identification problems

Arizona State University
Data Mining and Machine Learning Lab
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Advanced Representation Balancing

Two desiderata in learning latent confounders
e Balancing

e Treatment prediction
Existing methods are developed toward one of them, but not both.

Representation balancing has implication in causality-aware

machine learning tasks.
e |nvariant risk minimization

Arizona State University
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Timeline

May 2020
Dissertation Prospectus Defense

June 2020 - November 2020
Investigating the Proposed Problems

November - December 2020
Dissertation Writing

December 2020 - January 2021
Dissertation Defense
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