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何为时间序列？



时间序列

时间序列是按照时间排序的一组随机变量，它通常是在相等间隔的时间段内

依照给定的采样率对某种潜在过程进行观测的结果。

◆时间序列

◆时间序列的分析与挖掘
在过去的二十年中，时间序列的分析与挖掘被认为是数据挖掘中最具挑战性

的问题之一[1]。

[1] Fawaz, Hassan Ismail, et al. "Deep learning for time series classification: a review." Data Mining and Knowledge Discovery 33.4 (2019): 917-963.

交通流量时间序列 金融时间序列



何为生理时间序列？



生理时间序列

心电ECG 脑电EEG



生理时序-应用

◆医疗健康

重获肢体能力、运动康复、与周围环境进行交流、基于可穿戴设备进行健康评估



生理时序-应用

➢教育

学生注意力值的实时探测和训练

➢ 智能家居

➢ 刑侦审讯

➢ 娱乐(游戏)

➢军事

脑控无人机、无人车、机器人
➢电子

商务

淘宝造物节黑科技-淘宝意念购

➢交通
安全

疲劳检测、驾驶员精神状况监测



GraphSleepNet: Adaptive Spatial-Temporal Graph 

Convolutional Networks for Sleep Stage Classification

论文链接：https://www.ijcai.org/Proceedings/2020/184

论文代码：https://github.com/ziyujia/GraphSleepNet
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Introduction

睡眠：
• 人的一生中约有三分之一的时间都在睡眠中度过，
睡眠质量的好坏直接影响到人类的身心健康；

• 睡眠分期是评估睡眠质量和诊断睡眠障碍的重要手段。

人工睡眠分期：
• 睡眠专家会根据睡眠分期标准和多导睡眠图
（PSG）对睡眠阶段进行划分；

• 人工睡眠分期是一项繁琐且耗时的任务；
• 睡眠专家的主观性和可变性易影响睡眠分期的结果。

自动睡眠分期：
• 提高传统睡眠分期的效率；
• 具有重要的临床价值。



Related Work

睡眠分期
· 传统机器学习：

◆支持向量机和随机森林等方法。

◆需要手工设计特征，且要求大量的先验领域知识。

· 卷积神经网络和递归神经网络：

◆ FDCCNN[1]，SeqSleepNet[2]，DeepSleepNet[3]等。

◆输入必须是网格数据 (类似于图像)。



Motivation & Challenge

· 对大脑的功能连接进行建模：

◆图卷积神经网络在处理图数据中展示了相当优异的表现[4,5]。

◆现有的工作往往使用的是固定的图结构，但是睡眠是一个动态的过程。

◆人类对大脑的理解是有限的。

Beijing Jiaotong University

挑战1：如何为睡眠分期确定合适的图结构。

Grid data                     Graph data

· 网格数据的局限性：

◆大脑区域间的连接关系被忽视。

◆由于大脑处于非欧氏空间，因此图是最
适合用于表示大脑连接性的数据结构。



Motivation & Challenge

◆在睡眠期间，大脑区域的空间特性是不同的。

◆在时间维度上，睡眠阶段之间存在着过渡规则。

挑战2：如何有效地提取时空特征。

AASM睡眠分期标准中
的睡眠阶段过渡规则[6]

◆ 挑战2.1：如何将图卷积有效的应用于睡眠分期。

◆ 挑战2.2：如何利用相邻睡眠阶段之间的过渡规则。



Methods
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GraphSleepNet: 自适应时空图卷积网络

贡献：
◆第一次将时空图卷积用

于睡眠分期任务。

◆一种新颖的自适应睡眠

图学习机制。

◆我们设计了一种时空图

卷积。

◆实现了睡眠分期领域中

的最优结果。

自适应图学习模块，解决网络构建问题

时空图卷积提取睡眠时空特征



Methods

Beijing Jiaotong University

挑战1：如何为睡眠分期确定合适的图结构。

方法1：我们提出了一种自适应睡眠图学习
机制.

◆与时空图卷积集成在统一的架构中。

◆动态的构造邻接矩阵A。

◆利用损失函数中的第二项以控制邻接矩
阵A的稀疏性。



Methods
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挑战2：如何有效地提取时空特征。

方法2：我们设计了一种时空图卷积架构。

a) 空间维度：利用图卷积聚合空间信息。

◆使用基于谱图理论的图卷积方法。
◆利用图拉普拉斯算子的切比雪夫展开来降低计算复杂性。



Methods
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挑战2：如何有效地提取时空特征。

方法2：我们设计了一种时空图卷积架构。

b) 时间维度：使用卷积神经网络进行卷积操作以提取睡眠阶段间的过渡规则。

c) 时空注意力：自动提取有价值的信息。



Beijing Jiaotong University

Montreal Archive of Sleep Studies (MASS)-SS3 dataset [7]

◆ 该数据集包含来自62位健康受试者（28位男性和34位女性）的PSG记录。

◆ 专家根据AASM标准将这些PSG记录分为五个睡眠阶段（W，N1，N2，N3和
REM）。

◆ 我们从原始信号中的每个通道中提取微分熵（ DE ）特征。

数据集：

Stage W N1 N2 N3 REM Total

Samples 6357 4829 29777 7651 10566 59180

Ratio 10.7% 8.2% 50.3% 12.9% 17.9% 100%

Experiments

Number of samples for each sleep stage
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◆ [Dong et al., 2017][8]: 一种混合神经网络，它结合了多层感知机和长短期记忆，此外，我

们还比较了其随机森林和支持向量机的性能。

◆ [Supratak et al., 2017][3]: 一个结合了卷积神经网络和双向长短期记忆来捕捉时间不变量

特征和睡眠阶段间的过渡规则的模型。

◆ [Chambon et al., 2018][9]:利用多变量和多模态时间序列进行时间睡眠阶段分类。

◆ [Phan et al., 2019][2]: 通过使用基于注意力的双向递归神经网络和递归神经网络，将单一

的睡眠阶段分类问题改变为序列到序列的分类问题。

◆ [Sun et al., 2019][10]: 一种分别学习综合特征和时间序列的层次神经网络。.

◆ [Jiang et al., 2019][11]: 使用多模态分解和基于隐马尔科夫模型优化的泛用睡眠阶段分类。

基准方法:

Experiments
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Experiments

与SOTA方法的对比结果：



实验分析：

Beijing Jiaotong University

◆ 邻接矩阵: 我们提出的自适应图学习的结果优于所有固定图的结果。

◆ 输入睡眠阶段网络的数量 Tn : 分类表现随着 Tn 增加而提高, 并且在 Tn = 5时达到
最高的分类精度。

Experiments
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结论：
◆ 据我们所知，这是首次将时空图卷积应用到了自动睡眠阶段分类任务。此外，我们还

提出了一种新型的自适应睡眠图学习机制，该机制与时空图卷积同时集成在一个统一
的网络架构中。

◆ 我们设计了一种时空卷积，它包括用于捕捉空间特征的图积卷和用于捕捉不同睡眠阶
段之间过渡规则的时空卷积。

◆ 实验结果表明，GraphSleepNet在睡眠阶段分类中实现了最先进的性能。

展望：
◆ 我们所提出的模型是一个多变量生理时间序列的通用框架。

◆ 它还可以应用于时间序列的分类、预测和其他相关领域。

Conclusion



SST-EmotionNet: Spatial-Spectral-Temporal based Attention 3D 

Dense Network for EEG Emotion Recognition

论文链接：https://dl.acm.org/doi/abs/10.1145/3394171.3413724



情绪:
情绪与许多精神疾病相关联，如自闭症和抑郁症[1, 2];

情绪被用作评估患者精神障碍的参考[3]。

基于EEG信号的情绪识别:
与面部表情等情绪识别方法相比，脑电信号可以客观地反映不同的情绪，
是一种能够识别真实情绪的可靠方法[4] 。

[1] Al-Kaysi, et al. (2017). Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. Journal of affective 

disorders, 208, 597-603.

[2] Bocharov, et al. (2017). Depression and implicit emotion processing: An EEG study. Neurophysiologie Clinique/Clinical Neurophysiology, 47(3), 225-230.

[3] Zhong, et al. (2020). EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Transactions on Affective Computing.

[4] Zheng, et al. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on 

Autonomous Mental Development, 7(3), 162-175.

基于EEG信号的情绪识别



相关工作

· 频域特征:

◆ DE [5, 6], PSD [7, 8], DASM [9], RASM [10], DCAU [4] , etc.

· 时域特征:

◆ LSTM [11], MMResLSTM [12] , etc.

· 空域特征:

◆ CNN [13, 14], GCN [15, 16] , etc.

Beijing Jiaotong University

◆大部分现有的情绪识别方法仅考虑了以上一种或两种特征。



脑电信号在不同情绪状态下的时频空特征激活:

NEGATIVE

频空
(a) 

时空
(b)

频带

时间

情绪状态

𝛾𝛽𝛼𝜃𝛿

…

𝛾𝛽𝛼𝜃𝛿

…

POSITIVE

1 …2 3 𝑡 − 1 𝑡 1 …2 3 𝑡 − 1 𝑡

维度

High

Low

C1: 如何利用被现有方法所忽略的脑电时、频、空特征之间的互补性。

C2: 如何捕获情绪识别任务中脑电信号的局部时频空特征。



流程图

情绪的产生 3D表示构建 分类模型



方法

C1: 如何利用不同特征间的互补性？

S1.1: 构建脑电信号的3D时频空表示。



方法

C1:如何利用不同特征间的互补性？

S1.2:提出了一个双流的3D密集连接网络，基于已经

构建好的脑电3D表示，在一个统一的网络框架下同

时融合了脑电的时频空信息。



方法

C2:如何捕获时频空特征中的局部特征？

S2:设计了一种时频空注意力机制，用于动态捕

获时、频、空域下对于情绪识别任务有价值的局

部特征模式。

spatial-

spectral

(a) 

band 𝛾𝛽𝛼𝜃𝛿 𝛾𝛽𝛼𝜃𝛿



实验结果

与SOTA模型做对比:



总结

贡献: 

◆ 我们提出了一个双流3D密集网络，它使用脑电信号的3D时频空表示在一个统一的网络

框架下融合脑电信号的时频空特征。

◆ 我们提出了一种时频空注意力机制，用于动态捕捉时、频、空下有辨别力的局部模式。

◆ 我们两个数据集上进行了实验，实验结果显示我们的SST-EmotionNet表现优于其他

SOTA模型。
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Background

I Drug Discovery[1]

[1] M. Zitnik, et al. Machine Learning for Drug Development. IJCAI 20’
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Background

I Drug-Drug Interaction (DDI)

Drug-drug interactions occur when two or more drugs react with each other.
This DDI may cause you to experience an unexpected side effect.

I Why Need Drug Drug Interaction Prediction?

For example, mixing a drug you take to help you sleep (a sedative) and a
drug you take for allergies (an antihistamine) can slow your reactions and
make driving a car or operating machinery dangerous.
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Motivation

I Limitation of Previous Methods

• Molecule representation

Intuition: drugs with similar representations will
perform similar DDIs

Goal: learn better drug similarity based on
multi-view drug features[2]

Limitation: design specialized drug representation

• Network embedding-based methods

Intuition: drug combination leads to polypharmacy
side effect

Goal: predict labeled edges between drugs[3]

Limitation: single relation

[2] T. Ma, et al. Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders. IJCAI 18’

[3] M. Zitnik, et al. Modeling Polypharmacy Side Effects with Graph Convolutional Networks. Bioinformatics
18’
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Motivation

I Our Solution: KGNN

• Knowledge graph

provide abundant information

- structural relations among multiple
entities

- semantic relations associated with
each node

• Graph neural network

recursively learn from neighboring
information

- neighborhood sampling
- aggregation

Figure: Interactions in the
DRKG[4]

[4] https://github.com/gnn4dr/DRKG
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Knowledge Graph Neural Network

I Framework
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• DDI extraction and KG construction

• KGNN layer

• Drug-drug interaction prediction
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Knowledge Graph Neural Network

I DDI Extraction and KG Construction

• Download and parse the dataset

• Bio2RDF[5]

Table: The detailed description of KG.

DrugBank KEGG-drug

Drugs 2,578 1,925
Interactions 612,388 56,983

Entities 2,129,712 129,910
Relation Types 72 167

KG Triples 7,852,852 362,870

Dataset

...

KG

DDI Matrix

P
a
rsin

g

Bio2RDF

B
a
tch

size

Drug1 Drug2

DB00001 DB01181  1

DB00001 DB01250  0

DB15441 DB15443  0

...

Label

..
.

Drug

Gene
Target

hasEnzyme

[5] Bio2RDF: https://github.com/bio2rdf/bio2rdf-scripts/wiki
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Knowledge Graph Neural Network

I KGNN Layer

• Local receptive: 2-hop

• Neighborhood sampling

Nneigh(e): the entity connects directly to
a drug
S(e): a fixed size set, S(e) < Nneigh(e)

• Aggregation

aggregate the entity e and its

neighborhood representation e i
S(e)

Drug

Gene
Target

hasEnzyme

H=2

H=1

KG KGNN

aggresum = σ(W · (e + e iS(e)) + b)

aggreconcat = σ(W · concat(e, e iS(e)) + b)

aggreneighbor = σ(W · e iS(e) + b)
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Knowledge Graph Neural Network

I Drug-Drug Interaction Prediction

• Extract the DDI data sources and construct
the corresponding KG

• Obtain the features of drug and its
neighboring of related entities

• Concatenate all the representations and
feed them to output the interaction value

Figure: KGNN algorithmI Loss Function

Loss =
∑

(i ,j)∈Y (i ,j∈Nd ,j 6=i)

−yi ,j logyi ,j − (1 − yi ,j)log(1 − ŷi ,j)
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Experimental Results

I Dataset

• DrugBank (V5.1.4)[6]

obtains 2,578 approved small molecule drugs and 612,388 unique
approved DDIs spanning 13,339 drugs.

• KEGG-drug[7]

collects 1,925 approved drugs and 56,983 approved interactions
spanning 11,147 drugs and 324,183 interactions respectively.

randomly divide all approved DDIs as positive samples into training,
validation and testing sets in a 8/1/1 ratio

I Metrics

• ACC, AUPR, AUC-ROC, F1 scores

I Baselines

• Matrix Factorization (MF), Random Walk (RW), Neural Network
(NN), Deep Learning (DL), Knowledge Graph (KG)

[6] DrugBank: https://go.drugbank.com/releases/latest

[7] KEGG-drug: https://www.kegg.jp/kegg/drug/
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Experimental Results

I Results and Analysis
compare the performance of the proposed method with the baselines

I Ablation Study
test the performance of multiple aggregation operations

Metrics
Methods MF-based RW-based NN-based DL-based KG-based KGNNx

Laplacian GreRep DeepWalk struc2vec LINE SDNE GAE DeepDDI KG-ddi neighbor sum concat

ACC
0.7183 0.8443 0.8349 0.7882 0.8280 0.8303 0.7491 0.8123 0.7867 0.9354 0.9538 0.9561
0.8029 0.8718 0.8547 0.8436 0.8655 0.8674 0.7586 0.8229 0.8154 0.8846 0.8882 0.8950

AUPR
0.7533 0.9115 0.9070 0.8672 0.8915 0.8782 0.7403 0.9193 0.9801 0.9890 0.9892
0.8261 0.9055 0.9011 0.8861 0.8968 0.8967 0.7571 0.8442 0.9207 0.9247 0.9533

AUC-ROC
0.7966 0.9230 0.9181 0.8735 0.9092 0.9029 0.8085 0.9261 0.7867 0.9824 0.9902 0.9912
0.8736 0.9305 0.9208 0.9086 0.9264 0.9249 0.8334 0.8994 0.8154 0.9418 0.9453 0.9518

F1
0.7270 0.8461 0.8357 0.7962 0.8318 0.8373 0.7889 0.8466 0.7843 0.9366 0.9544 0.9566
0.8079 0.8748 0.8570 0.8476 0.8695 0.8704 0.7888 0.7966 0.8152 0.8869 0.8909 0.8982

Table: Performance of KGNN against comparative approaches. First/second row of each method corresponds to results
reported on DrugBank and KEGG-drug dataset respectively.
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Experimental Results

I Impact of Key Parameters

• Neighborhood size k

k=16, achieves the best
performance

• Depth of receptive field H

H = 3, performance decreases

• Dimension of embedding d

d =32 or 64, boost the
performance
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Conclusion and Future Work

I Conclusion

• An novel framework for drug-drug interaction prediction.
• Extends spatial-based GNN methods to the knowledge graph.
• Provides new insights into the study of jointly considering

- topological structure information of drug
- semantic relation of knowledge graph

I Future Work
• Large-scale knowledge graph
• Neighborhood sampling
• Multi-typed DDI prediction

Paper: https://www.ijcai.org/Proceedings/2020/0380.pdf
Code: https://github.com/jacklin18/KGNN
About me: https://jacklin18.github.io/

DrugAI
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Introduction
What is causality?

A definition with random variables
• Given two random variables T and Y, we say T causes Y iff 

changing the value of T would cause a change in the value 
of Y with the values of all the other variables fixed.

2
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Introduction
Why do we care about causal effects?
• They are crucial for decision making

– A/B tests in tech companies 
– Clinical trials for medicines

Why do we study networked observational data?
• Network information is ubiquitous.

– Social networks
– Branch networks of banks

• Network information can be useful, but how?

3
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Introduction
Networked observational data 

- feature vector of an instance 
- binary observed treatment of an instance 
- an observed factual outcome of an instance 
- network information

4
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Challenge and Motivation
• Challenge: Hidden confounders

– Without controlling hidden confounders -> biased 
estimates

• Motivation: two heuristics in existing work
– Balancing the representation of confounders [1]
– Predicting the treatment assignments [2]
– Can we benefit from properly combining them?

5

[1] Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." In International 
Conference on Machine Learning, pp. 3076-3085. PMLR, 2017.
[2] Veitch, Victor, Yixin Wang, and David Blei. "Using embeddings to correct for unobserved confounding in networks." In Advances in Neural 
Information Processing Systems, pp. 13792-13802. 2019.
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Identification
Identification: write causal estimands as probability quantities.

In this work, we follow the theory of measurement bias [1] to identify causal 
effects based on the following causal graph.

Specifically, with the conditional independence , we can 
identify the causal effect using 

6

[1] Kuroki, Manabu, and Judea Pearl. "Measurement bias and effect restoration in causal inference." Biometrika 101, no. 2 (2014): 423-437.

Network Information
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IGNITE
A Minimax game for learning latent confounders: overview

7
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IGNITE
Critic based representation balancing

Gradient penalty [1]

8

[1] Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. "Improved training of 
wasserstein gans." In Advances in neural information processing systems, pp. 5767-5777. 2017.



Arizona State University

Data Mining and Machine Learning Lab IGNITE

IGNITE
A Minimax game for learning latent confounders: min step

9
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IGNITE
A Minimax game for learning latent confounders: max step

10
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Experimental Setup
• Semi-synthetic datasets

– We obtain features and network information from real-world datasets.
– We synthesize treatments and outcomes similar to the News dataset in [1].
– We consider various strength of hidden confounding controlled by parameter
– Different from [2], we randomly sample edge weights to reflect real-world cases.

Training/validation/test = 60% : 20% : 20%

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.
[2] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning individual causal effects from networked observational data." In Proceedings of the 13th 
International Conference on Web Search and Data Mining, pp. 232-240. 2020.

11
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Experimental Setup
• Baselines

– SOTA neural network based and ensemble based causal inference methods
• Ablation models: GATD+, GATD and GATDT
• Network Deconfounder [3] and Causal Network Embedding [5]
• CFRNet [1], CEVAE [2], and Causal Forest [4]

• Evaluation:
– compare the estimated causal effects with the ground truth
– robustness under various hidden confounding strength

• Metrics:
– RMSE on estimated ITEs

– MAE on the estimated average treatment effect (ATE)

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurIPS, 2017.

[3] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning individual causal effects from networked observational data." In Proceedings of the 13th International Conference on Web 

Search and Data Mining, pp. 232-240. 2020.

[4] Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." JASA. 2018

[5] Veitch, Victor, Yixin Wang, and David Blei. "Using embeddings to correct for unobserved confounding in networks." In Advances in Neural Information Processing Systems, pp. 

13792-13802. 2019.

12
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• IGNITE outperforms the ablation models and the state-of-the-art methods as 
it combines the benefit of the two heuristics.

• The error of IGNITE increases the least as the influence of hidden 
confounding (        ) increases. 

Results

13
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More to find
The paper can be found at https://www.ijcai.org/Proceedings/2020/0625.pdf

You can also reach out to me through rguo12@asu.edu

Code is available upon request for now and will be released soon.

14
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The Challenge
With observational data, what can we estimate?
Probabilistic quantities: joint, conditional and marginal distributions of observed 
variables.

Causal effect
• In potential outcome framework

– Potential outcomes 
– Individual treatment effect (ITE)
– Conditional average treatment effect (CATE)
– Average treatment effect
– Not directly estimable from data

How can network information help connect probabilistic quantities to causal effects?

15
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Causal Identification
Causal Identification
• With causal assumptions, we can identify causal effects by 

writing them as functions of probabilistic quantities.

16

Causal Effects
Probabilistic 

Quantities
Identification
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Causal Identification
Strong ignorability

• It assumes that 
– all the confounders have been measured as the observed features x,
– each instance’s probability to receive treatment (true propensity score) is 

between 0 and 1.
• In a causal graph

• In the potential outcome framework

• How it works in identifying CATE/ITE

17

Can be 
estimated!
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Causal Identification
Strong ignorability can be untenable given observational data
• There can exist hidden confounders (e.g., socio-economic 

status)
• Using strong ignorability can lead to confounding bias.

Relaxed strong ignorability assumption with latent confounders z

• Latent confounders z are not observable, we only assume its existence.
• We can learn z from data via machine learning models.

19



Arizona State University

Data Mining and Machine Learning Lab IGNITE

Causal Identification
We propose to use network information and observed features to 
improve the learned latent confounders.
• Network information can compensate for hidden confounders.
• Homophily: similar individuals are more likely to connect with 

each other.

The causal graph

20
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Two Problems
• Learning individual treatment effects with networked 

observational data [1]

• Counterfactual evaluation of treatment assignment functions 
with networked observational data [2]

[1] Guo, Ruocheng, Jundong Li, and Huan Liu. "Learning Individual Causal Effects from Networked Observational 
Data." WSDM 2020.
[2] Guo, Ruocheng, Jundong Li, and Huan Liu. "Counterfactual Evaluation of Treatment Assignment Functions with 
Networked Observational Data." SDM 2020.

21
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Learning Individual Causal Effects with 
Networked Observational Data  

12
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Problem Definition
Problem: learning ITEs with networked observational data

Given: networked observational data

Find: ITE                      of an instance given its features and the 
network information.

23
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Existing Methods
Neural network based methods that relies on strong ignorability

• CFRNet [1]

Neural network based methods that learns latent confounders with variational 
inference

• CEVAE [2]

Ensembles of trees that also rely on strong ignorability
• BART [3] Causal Forest [4]

None of them utilizes network information

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurIPS, 2017.

[3] Hill, Jennifer L. "Bayesian nonparametric modeling for causal inference." Journal of Computational and Graphical Statistics. 2011.
[4] Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." JASA. 2018. 24
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Network Deconfounder
How to leverage network information to 
learn latent confounders?

• Use observed features and network 
information through Graph 
Convolutional Networks (GCN). 

25

Learned latent confounders

Normalized adjacency matrix with renormalization trick [1]

Weight matrix of the GCN layer (parameters to be learned)

[1]Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
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Network Deconfounder
How to leverage network information to 
learn latent confounders?

• Using the supervision of observed 
potential outcomes.

26

Fully connected 
layers for 
regression

Outcome
inference
function

Inferred 
outcome

Minimize the MSE on 
factual outcomes
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Network Deconfounder
How to leverage network information to 
learn latent confounders?

• Representation balancing: mitigate 
confounding bias/domain shift problem.

27

Minimize W-1 distance between latent confounder 

distribution of the treated (P) and the controlled (Q)

W-1 distance is the solution of the optimal transport 

problem between two distributions.
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Network Deconfounder
How to leverage network information to 
handle confounding bias?

• Loss function

The W-1 distance (representation balancing penalty) 
and its gradients can be approximated using the 
efficient algorithm proposed by [1].

[1] Cuturi, Marco, and Arnaud Doucet. "Fast Computation of Wasserstein Barycenters." In 

International Conference on Machine Learning, pp. 685-693. 2014.

28
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Experimental Setup
• Semi-synthetic datasets

– We obtain features and network information from real-world datasets.
– We synthesize treatments and outcomes similar to the news dataset in [1].

– We consider various strength of hidden confounding controlled by parameter

Training/validation/test = 60% : 20% : 20%

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

29

Code & Data:
https://github.com/rguo12/networ
k-deconfounder-wsdm20

https://github.com/rguo12/network-deconfounder-wsdm20
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Experimental Setup
• Baselines

– SOTA neural network based and ensemble based causal inference methods
• CFRNet [1]
• CEVAE [2]
• BART [3]
• Causal Forest [4]

• Evaluation:
– compare the estimated causal effects with the ground truth
– robustness under various hidden confounding strength

• Metrics:
– RMSE on estimated ITEs

– MAE on the estimated average treatment effect (ATE)

[1] Johansson, Fredrik, Uri Shalit, and David Sontag. "Learning representations for counterfactual inference." ICML. 2016.

[2] Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." In NeurIPS, 2017.

[3] Hill, Jennifer L. "Bayesian nonparametric modeling for causal inference." Journal of Computational and Graphical Statistics. 2011.

[4] Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." JASA. 2018.
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• Network Deconfounder outperforms the state-of-the-art 
methods as it recognizes patterns of hidden confounders from 
network information.

• The error of Network Deconfounder increases the least as the 
influence of hidden confounding (        ) increases. 

Results

31
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Counterfactual Evaluation of Treatment Assignment 
Functions with Networked Observational Data

33
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Problem Definition
Given: Networked observational data 
and a treatment assignment function 

Find: estimate of the true utility of the treatment assignment 
function 𝜋 on the given data

34
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Existing Methods
There are three types of classic estimators

Direct Method [1]

Weighted Estimator [2, 3]

• Inverse Propensity Scoring (IPS) [2]
• Self Normalized IPS (SNIPS) [3]

Doubly Robust Estimator (combination of the aforementioned two) [4]

Network information has not been used!

35

[1] Beygelzimer, A., Dasgupta, S., & Langford, J.. Importance weighted active learning. ICML 2009.

[2] Swaminathan, A., & Joachims, T.. Counterfactual risk minimization: Learning from logged bandit feedback. ICML 2015.

[3] Swaminathan, A., & Joachims, T. (2015). The self-normalized estimator for counterfactual learning. NIPS 2015.

[4] Dudík, M., Langford, J., & Li, L.. Doubly robust policy evaluation and learning. ICML 2011.

● Individual 
causal effect 
modeling

● Propensity 
score modeling
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Proposed Framework
COunterfactual Network Evaluator (CONE)

• It learns two partial representations of latent confounders for
– Individual causal effect modeling
– Propensity score modeling

• It maximizes the mutual information between the two partial representations to 
capture latent confounders

36

An overview of CONE
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CONE Framework
Compute partial representations with GAT layers [1] 
• They capture importance of each edge

a and b are weight vectors
Wk and Uk is the weight matrix of the k-th head

[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.. Graph attention networks. ICLR 2018.

37
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CONE Framework
Factual Outcome Inference Loss

• Let the partial representation of latent confounders predict factual outcome
• We use fully connected NN with ELU activation and MSE penalty

38
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CONE Framework
Treatment Prediction Loss

• CONE models propensity scores with the other partial representation
• CONE infers propensity score by a fully connected NN with sigmoid activation

• CONE uses cross-entropy loss for the propensity score model

39
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CONE Framework
Mutual Information Maximization
Intuition

• Latent confounders should influence treatment and outcome.

A tight lower bound of mutual information is computed by an NN estimator [1].

The penalty term is formulated to minimize 
the negative mutual information

[1] Belghazi, Mohamed Ishmael, Sai Rajeswar, Aristide Baratin, Devon Hjelm, and Aaron Courville. "MINE: Mutual Information Neural Estimation." ICML 2018.

40

h: fully connected NN with ELU units
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CONE Framework
Training CONE with a combination of the loss functions

41

- the NN mutual information 
estimator’s parameters

- other model parameters
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Counterfactual Evaluation with CONE
Goal: estimating utility of a treatment assignment function

We combine the two partial representations and adopt the doubly 
robust estimator with SNIPS weights

42

[1] Bennett, Andrew, and Nathan Kallus. "Policy evaluation with latent confounders via optimal balance." In Advances in Neural Information Processing 
Systems, pp. 4827-4837. 2019.

Inferred outcomes

By simple direct method in [1]

SNIPS weights

With propensity scores by a logistic regression 
model
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Experimental Settings
Datasets Description

Compared to the one used in network deconfounder, we standardize the outcomes into [0,1] and introduce 
negative ITEs.
Training/validation/test = 60% : 20% : 20%

Evaluation
Given treatment assignment functions with randomly sampled weights:

We compare the estimated utility of a given treatment assignment function with the group truth

K is the number of randomly sampled treatment assignment functions.

43

Controls the strength of hidden confounding
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Experimental Setup
Baseline Methods: 9 SOTA baseline methods
Optimal Kernel Balancing (OKB)
Inverse Propensity Scoring (IPS-X)
Self-Normalized Inverse Propensity Scoring (SNIPS-X)
Direct Method (OLS1, OLS2, DM-X)
Linear regression methods: OLS1, OLS2
NN-based: DM-X
Doubly Robust Estimators (DR-OLS1, DR-OLS2, DR-DM-X)

44



Arizona State University

Data Mining and Machine Learning Lab IGNITE

Effectiveness
Observations

• CONE outperforms baselines consistently and significantly
• CONE worsens less than baselines when hidden confounding effect (      ) grows
• Using network information helps counterfactual evaluation

45
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Conclusion
We propose

• a causal identification strategy
• two novel frameworks
• to solve two causal inference problems with networked observational data.

Empirical results support the hypothesis
• with network information, we can improve the learned latent confounders
• for causal effect estimation and counterfactual evaluation.

46
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Proposed Work for Dissertation Defense

47
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Fairness of Treatment Assignment Functions

Fairness is important in decision making
• Resources of beneficial treatments are often limited.
• For example, In COVID-19, Small Business Administration (SBA) 

needs to distribute limited amount of loans.

When we adapt fairness metrics from machine learning to causal 
inference, we find some of them depend on counterfactuals.
• They lead to challenging causal identification problems

48
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Advanced Representation Balancing
Two desiderata in learning latent confounders
• Balancing
• Treatment prediction

Existing methods are developed toward one of them, but not both.

Representation balancing has implication in causality-aware 
machine learning tasks.
• Invariant risk minimization

49
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Timeline
May 2020
Dissertation Prospectus Defense

June 2020 - November 2020
Investigating the Proposed Problems

November - December 2020
Dissertation Writing

December 2020 - January 2021
Dissertation Defense
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