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Background



Supervised Machine Learning

Given IID training examples from a sample space Z = X × Y

I ( ,dog), ( ,car), ( ,airplane), . . .

I formally S =
{
zi = (xi , yi ), i = 1, . . . , n

}
, zi ∈ Z

Aim to find prediction rule gw : X 7→ Y, parameterized by w ∈ Ω

I e.g., linear models: gw(x) = 〈w, x〉

Loss function f (w; z) to measure performance of w on an example z

I least-squares loss: f (w; z) = (y − gw(x))2

(x,y)

(x,gw(x))



Population and Empirical Risk

Aim: build a model with small population risk (testing error) F (w) = Ez [f (w; z)]

F is unknown, which is approximated by empirical risk (training error) on S

FS(w) =
1

n

n∑
i=1

f (w; zi )

A learning algorithm A with an output model A(S) ∈ Ω

e.g., empirical risk minimization: A(S) = arg minw∈Ω FS(w)

regularized risk minimization: A(S) = arg minw∈Ω FS(w) + λ‖w‖2
2

gradient descent (GD)

stochastic gradient descent (SGD)



Gradient Descent

Gradient Descent (GD)

for t = 1, 2, . . . to T do
wt+1 ← wt − ηt∇FS(wt) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

simple, works well for many ML problems

computing ∇FS(wt) is O(n), slow if n is large

∇FS(wt) =
1

n

n∑
i=1

∇f (wt ; zi ).

GD requires to go through examples for a gradient computation!



Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

for t = 1, 2, . . . to T do
it ← random index from {1, 2, . . . , n}
wt+1 ← wt − ηt∇f (wt ; zit ) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

computation cost per iteration is O(1) instead of O(n)

correct in expectation:

Eit [∇f (wt ; zit )] =
1

n

n∑
i=1

∇f (wt ; zi ) = ∇FS(wt)

widely used in training deep neural networks (DNNs)

Theoretical (especially statistical) behavior of SGD is not well understood!



Excess Generalization Error

Let w∗ be the best model parameter
w∗ = arg min

w∈Ω
F (w).

Target of analysis: excess generalization error

E
[
F (A(S))− F (w∗)

]
= E

[
F (A(S))− FS(A(S))︸ ︷︷ ︸

estimation error

+FS(A(S))− FS(w∗)︸ ︷︷ ︸
optimization error

]

1 estimation error: difference between testing error and training error at A(S)

2 optimization error: difference between A(S) and w∗ measured by training error



Estimation and Optimization Errors
Optimization errors decrease as we increase the number of iterations

Estimation errors increase as we increase the number of iterations

We need to balance these two errors by early-stopping



Estimation and Optimization Errors

There is a huge literature on optimization errors in optimization theory Bach and Moulines (2013); Smale and Yao (2006);

Duchi et al. (2010); Johnson and Zhang (2013); Zhang (2004a); Bottou (1998); Bottou et al. (2018); Shamir and Zhang (2013); Rakhlin

et al. (2012); Nemirovski et al. (2009); Nesterov (2015); Ying and Pontil (2008); Ying and Zhou (2017)

There is a huge literature on estimation errors in statistical learning theory Zhou (2002); Shi et al. (2011); Hu et al.

(2013); Bartlett et al. (2006); Zhang (2004b); Tsybakov (2004); Vapnik (2013); Bartlett and Mendelson (2002); Lin et al. (2017); Cucker

and Zhou (2007); Smale and Zhou (2007); Steinwart and Christmann (2008); Guo et al. (2016)

There is far less study to consider these two errors together Bousquet and Bottou (2008); Hardt et al. (2016); Lin and

Rosasco (2017); Yao et al. (2007)

Our contribution: study estimation and optimization error in a framework!



Approaches to Estimation Errors

Stability Approach:

estimate sensitivity of model wrt perturbation of sample

Hardt et al. (2016); Kuzborskij and Lampert (2018); Charles and Papailiopoulos (2018); Feldman and Vondrak (2019); Bousquet et al.

(2020)

Uniform Convergence Approach:

bound supw∈Ω

∣∣FS(w)− F (w)
∣∣

Bartlett and Mendelson (2002); Lin et al. (2016)

Integral Operator Approach:

use the structure of least-square loss

Smale and Zhou (2007); Rosasco and Villa (2015); Ying and Pontil (2008); Lin and Rosasco (2017); Dieuleveut and Bach (2016); Lin and

Zhou (2017)



Outline

Stability and Generalization of SGD

Extensions

Summary



Stability and Generalization of SGD



Uniform Stability Approach
A randomized algorithm A is ε-uniformly stable if, for any two datasets S and S ′ that differ by one example
(neighbor dataset), we have (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005)

sup
z

EA

[
f (A(S); z)− f (A(S ′); z)

]
≤ ε. (1)

If A is uniformly stable, then it is generalizable!



Uniform Stability Approach

Existing results (Hardt et al., 2016)

If f is convex

strongly smooth, i.e,
∥∥∇f (w, z)−∇f (w′, z)

∥∥
2
≤ L‖w − w′‖2

B-Lipschitz, i.e., ‖∇f (w; z)‖2 ≤ B

For SGD with step size ηt , informally we have (Let {wt}t and {w′t} be SGD sequences on neighboring S and S ′)

estimation error ≤ uniform stability ≤ E[‖wT − w′T‖2]︸ ︷︷ ︸
argument stability

≤ 2B

n

T∑
t=1

ηt .

The SGD implementation can be represented an gradient update defined by

Gη,z(w) := w − η∇f (w; z) =⇒ wt+1 = Gη,zit (wt).

Key Property: Let f be convex, L-smooth and B-Lipschitz.

1 If η ≤ 2/L, then Gη,z is contractive: ‖Gη,z(wt)− Gη,z(w′t)‖2 ≤ ‖wt − w′t‖2

2 Gη,z is B-bounded: ‖Gη,z(w)− w‖2 ≤ Bη.



Assumptions are Restrictive

Lipschitz continuity fails for the least square loss

f (w; z) = |〈w, x〉 − y |2

∇f (w; z) = 2
(
〈w, x〉 − y

)
x

Smoothness fails for the hinge loss

f (w; z) = max
{

0, 1− y〈w, x〉
}

not even differentiable

Can we remove these assumptions and explain the real power of SGD?



Key Idea: Let f be convex, Lipschitz but not smooth.

Standard analysis shows ‖Gη,z(wt)− Gη,z(w′t)‖2 ≤ ‖wt − w′t‖2 + ηt

=⇒ unif stab ≤
T∑
t=1

ηt =⇒ risk ≤
T∑
t=1

ηt︸ ︷︷ ︸
estimation

+ 1/(
T∑
t=1

ηt)︸ ︷︷ ︸
optimization

Question: how about considering ‖Gη,z(wt)− Gη,z(w′t)‖2
2 and showing

‖Gη,z(wt)− Gη,z(w′t)‖2
2 ≤ ‖wt − w′t‖2

2 + η2
t

?
=⇒ risk ≤

( T∑
t=1

η2
t

) 1
2 + 1/(

T∑
t=1

ηt)

Let f be convex, smooth but not Lipschitz.

It is clear ‖w − Gη,zi (w)‖2 = η‖∇f (w; zi )‖2

Self-bounding property of smooth and nonnegative f implies ‖∇f (w; z)‖2 ≤
√

2Lf (w; z)

Question: how about considering all zi (boundedness of averaged gradient update)

1

nη(2L)
1
2

n∑
i=1

‖w − Gη,zi (w)‖2 ≤
(1

n

n∑
i=1

f (w; zi )
) 1

2
=
(
training error

) 1
2



On-Average Model Stability

To handle the general setting, we propose a new concept of stability.

S = {z1, z2, . . . , zn}
S ′ = {z ′1, z ′2, . . . , z ′n}

perturbation
======⇒

S = {z1, z2, . . . , zn}
A−→ A(S)

S (1) = {z ′1, z2, . . . , zn}
A−→ A(S (1))

S (2) = {z1, z
′
2, . . . , zn}

A−→ A(S (2))

...

S (n) = {z1, z2, . . . , z
′
n}

A−→ A(S (n))

On-Average Model Stability

We say a randomized algorithm A : Zn 7→ Ω is on-average model ε-stable if

ES,S′,A

[1

n

n∑
i=1

‖A(S)− A(S (i))‖2
2

]
≤ ε2. (2)

Y. Lei and Y. Ying. “Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent.” International Conference on Machine Learning, 2020.



Generalization by On-average Model stability

Hölder Continuous Gradients
We say f has α-Hölder continuous gradients (α ∈ [0, 1]) if∥∥∇f (w, z)−∇f (w′, z)

∥∥
2
≤ ‖w − w′‖α2 . (3)

α = 0 means that f is Lipschitz and α = 1 means strongly smoothness.

Generalization by On-average Model stability
If A is on-average model ε-stable, then

estimation error = O
(
ε1+α + ε

(
training error

) α
1+α

)
. (4)

Can handle both Lipschitz functions and un-bounded gradients!

If training error = 0, then estimation error = O
(
ε1+α

)
.

This is much faster than estimation error = O(ε).



Main Results for SGD

On-Average Model Stability for SGD

If ∇f is α-Hölder continuous with α ∈ [0, 1], then

ε2
T+1 = O

( T∑
t=1

η
2

1−α
t +

1 + T/n

n

( T∑
t=1

η2
t

) 1−α
1+α

( T∑
t=1

η2
tE[FS(wt)]

) 2α
1+α
)

Weighted sum of training errors (i.e.
∑T

t=1 η
2
tE
[
FS(wt)

]
) can be estimated using tools of analyzing

optimization errors

Estimation error ≤ On-average model stability ≤ Weighted sum of training errors

Recall, for uniform stability with Lipschitz and smooth f , that

Estimation error ≤ Uniform stability ≤ 2B

n

T∑
t=1

ηt



SGD with Smooth Functions

Let f be convex and strongly-smooth. Let w̄T =
∑T

t=1 ηtwt/
∑T

t=1 ηt .

Theorem (Minimax optimal generalization bounds)

Choosing ηt = 1/
√
T and T � n implies that

E
[
F (w̄T )

]
− F (w∗) = O

(
1/
√
n
)
.

Theorem (Fast generalization bounds under low noise)

For low noise case F (w∗) = O(1/n), we can take ηt = 1,T � n and get

E[F (w̄T )] = O(1/n).

We remove bounded gradient assumptions.

We get the first-ever fast generalization bound O(1/n) by stability analysis.



SGD with Lipschitz Functions
Let f be convex and G -Lipschitz (Not necessarily smooth! e.g. the hinge loss.)

Our on-average model stability bounds can be simplified as

ε2
T+1 = O

((
1 + T/n2) T∑

t=1

η2
t

)
. (5)

Key idea: gradient update is approximately contractive

‖Gη,z(w)− Gη,z(v)‖2
2 ≤ ‖w − v‖2

2 + O(η2). (6)

Theorem (Generalization bounds)

We can take ηt = T−
3
4 and T � n2 and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

We get the first generalization bound O(1/
√
n) for SGD with non-differentiable functions based on stability

analysis.



SGD with α-Hölder continuous gradients
Let f be convex and have α-Hölder continuous gradients with α ∈ (0, 1).

Key idea: gradient update is approximately contractive

‖Gη,z(w)− Gη,z(v)‖2
2 ≤ ‖w − w′‖2

2 + O(η
2

1−α ).

Theorem

If α ≥ 1/2, we take ηt = 1/
√
T, T � n and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

If α < 1/2, we take ηt = T
3α−3

2(2−α) , T � n
2−α
1+α and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

Theorem (Fast Generalization bounds)

If F (w∗)=O( 1
n

), we let ηt =T
α2+2α−3

4 , T �n
2

1+α and get E[F (w̄T )]=O(n−
1+α

2 ).



Extensions



Stochastic Gradient Methods for Pairwise Learning
Pairwise learning unifies several important problems

(a): Metric Learning (b): Ranking

Pairwise loss: f (w; z , z ′) measures behavior of hw over z , z ′

testing error F (w) = Ez,z′
[
f (w; z , z ′)

]
, training error FS(w) =

1

n(n − 1)

∑
i,j∈[n]:i 6=j

f (w; zi , zj).

Note the summands in FS(w) are not independent, e.g., f (w; z1, z2) and f (w; z1, z3)

We propose novel pairwise learning algorithms and develop a framework to study stability, generalization and
optimization!

Y. Lei, A. Ledent and M. Kloft. “Sharper Generalization Bounds for Pairwise Learning.” Advances in Neural Information Processing Systems, pages 21236-21246, 2020.



Stability and Generalization for Minimax Problems

Minimax formulation (e.g. GAN, AUC maximization, and robust learning):

min
w∈W

max
v∈V

{
F (w, v) := Ez [f (w, v; z)]

}
. (7)

In practice, a randomized optimization algorithm A (e.g. SGDA) is employed to solve its empirical version:

min
w∈W

max
v∈V

{
FS(w, v) :=

1

n

n∑
i=1

f (w, v; zi )
}
. (8)

The literature is vast and most of them focused on the convergence of the output of A, i.e.

A(S) = (Aw(S),Av(S)).

We develop a framework to study the stability and generalization for stochastic gradient methods for minimax
problems!

Y. Lei, Z. Yang, T. Yang and Y. Ying “Stability and Generalization of Stochastic Gradient Methods for Minimax Problems.” In International Conference on Machine Learning, pages 6175-6186,
2021.



Conclusion



Summary

Stability and Generalization of SGD

novel stability measures

remove restrictive assumptions

better bounds

Extensions

pairwise learning

minimax problems
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